Aquatic Zones

 

Aquatic systems are not called biomes,

The major differences between the various aquatic zones are due to salinity, levels  of dissolved nutrients; water temperature, depth of sunlight penetration.

 

  1. Fresh Water Ecosystem-Fresh water ecosystem are classified as lotic

(moving water) or lentic (still or stagnant water).

 

  1. Marine Ecosystem-
  2. Estuaries-Coastal bays, river mouths and tidal marshes  form  the

estuaries.  In estuaries, fresh water from rivers meet ocean water and the two are mixed by action of tides.

Estuaries are highly productive as compared to the adjacent river or sea

Biomes and Its types

Biome

The terrestrial part of the biosphere is divisible into enormous regions called biomes, which are characterized, by climate, vegetation, animal life and general soil type.

No two biomes are alike.

The most important climatic factors are temperature and precipitation.

  1. Tundra- Northern most region  adjoining the ice bound  poles. Devoid of trees except stunted shrubs in the southern part of tundra biome, ground flora includes lichen, mosses and sedges.

The typical animals are reindeer, arctic fox polar bear, snowy owl, lemming, arctic hare,  ptarmigan. Reptiles and amphibians are almost absent

 

  1. Taiga- Northern Europe, Asia and North America. Moderate temperature than tundra. Also known as boreal forest.

The dominating vegetation is coniferous evergreen mostly spruce, with some pine and firs. The fauna consists of small seed eating birds, hawks, fur bearing carnivores, little mink, elks, puma, Siberian tiger, wolverine, wolves etc.

 

  1. Temperate Deciduous Forest- Extends over Central and Southern Europe, Eastern North America, Western China, Japan, New Zealand etc.

Moderate average temperature and abundant  rainfall. These are generally the  most  productive agricultural areas of the earth The flora includes trees like beech, oak, maple and cherry. Most animals are the familiar vertebrates and invertebrates.

  1. Tropical rain forest- Tropical areas  in  the equatorial regions, which is  a bound  with  life.  Temperature and rainfall high.

Tropical rainforest covers about 7% of the earth’s surface & 40% of the world’s plant and animal species.

Multiple storey of broad-leafed evergreen tree species are in abundance.

Most animals and epiphytic plants(An epiphyte is a plant that grows harmlessly upon another plant)  are concentrated in the canopy or tree top zones

  1. Savannah- Tropical region: Savannah is most extensive in Africa

Grasses with scattered trees and fire resisting thorny shrubs.

The fauna include a great diversity of grazers and browsers such as antelopes, buffaloes, zebras, elephants and rhinoceros;  the carnivores include lion, cheetah, hyena; and mongoose, and many rodents

 

  1. Grassland- North America, Ukraine, etc . Dominated by grasses. Temperate conditions with rather low rainfall. Grasses dominate the vegetation. The fauna include large herbivores like bison, antelope, cattle, rodents, prairie dog, wolves, and a rich and diverse array of ground nesting bird

 

  1. Desert- Continental interiors with very low and sporadic rainfall with low humidity. The days are very hot but nights are cold. The flora is drought resistance vegetation such as cactus, euphorbias, sagebrush. Fauna : Reptiles, Mammals and birds.

Niche

 

Niche:- a  description  of  all  the  biological,  physical  and  chemical  factors  that  a  species needs to survive, stay healthy and reproduce. No two species have exact identical niches. Niche plays an important role in conservation of organisms.

Types of Niche

  1. Habitat niche – where it lives
  2. Food niche – what is eats or decomposes & what species it competes with
  3. Reproductive niche -how and when it reproduces.
  4. Physical & chemical niche – temperature, land shape, land slope, humidity & other requirement.

Classification of Eco-system

 

  1. Natural Ecosystem-

Terrestrial- Forests, Grasslands, Deserts

Aquatic- Fresh Waters, Saline Waters, Marine Waters

Ecotone :- a zone of junction between two or more diverse ecosystems. For e.g. the mangrove forests represent an ecotone between marine and terrestrial ecosystem.

Characteristics of Ecotone

It may be very narrow or quite wide. It has the conditions intermediate to the adjacent ecosystems. Hence it is a zone of tension.

It is linear as it shows progressive increase in species composition of one in coming community and a simultaneous decrease in species of the other out going adjoining community.

A well developed ecotones contain some organisms which are entirely different from that of the adjoining communities.

Sometimes the number of species and the population density of some of the species is much greater in this zone than either community. This is called edge effect For example the density of birds is greater in the mixed habitat of the ecotone between the forest and the desert.

Components of Ecosystem

 

The components of the ecosystem is categorised into abiotic of non-living and biotic of living components. Both the components of ecosystem and environment are same.

 

  1. Abiotic Components

the inorganic and non-living parts of the world.  consists of soil, water, air, and light energy etc.  involves a ,large number of chemicals like oxygen, nitrogen-, etc. and physical processes including volcanoes, earthquakes, floods, forest fires, climates, and weather conditions.

Abiotic factors are the most important determinants of where and how well an organism exists in its environment. Although these factors interact with each other, one single factor can-limit the range of an organism.

 

  1. a) Energy

Energy from the sun is essential for maintenance of life. Energy determines the distribution of organisms in  the environment.

  1. b) Rainfall
  2. c) Temperature :-Temperature is a critical factor of the environment which greatly influences survival of organisms. Organisms can tolerate only a certain range of temperature and humidity.
  3. d) Atmosphere :It is made up of 21% oxygen, 78% nitrogen , 0.038% carbon dioxide and other inert gases  (0.93% Argon, Neon etc).
  4. e) Substratum :Land is covered by soil and a wide variety of microbes, protozoa, fungi and small animals (invertebrates) thrive in it
  5. f) Materials:

(i) Organic compound

Such as proteins, carbohydrates,  lipids,  humic  substances are formed from inorganic compound on decomposition.

(ii) Inorganic compound

Such as carbon,   carbon dioxide, water, sulphur, nitrates, phosphates, and ions of various metals are essential for organisms to survive.

  1. g) Latitude and altitude

Latitude has a strong influence on an area’s temperature, resulting in change of climates such as polar, tropical, and temperate. These climates determine different natural biomes. From sea level to highest peaks, wild life is influenced by altitude. As the altitude increases, the air becomes colder and drier, affecting wild life accordingly.( wild life decrease as altitude increase)

 

  1. Biotic Components :Biotic components include living organisms comprising plants, animals and microbes and are classified according to their functional attributes into producers and consumers.

Primary producers – Autotrophs (self-nourishing) Primary producers are basically green plants (and certain bacteria and algae). They synthesise carbohydrate from simple inorganic raw materials like carbon dioxide and water in the presence of sunlight by the process of photosynthesis for themselves, and supply indirectly to other non- producers.

In terrestrial ecosystem, producers are basically herbaceous and woody plants, while in aquatic ecosystem producers are various species of microscopic algae.

 

  1. b) Consumers — Heterotrophs or phagotrophs (other nourishing)

 

Consumers are incapable of producing their own food (photosynthesis).

They depend on organic food derived from plants, animals or both.

Consumers can be divided into two broad  groups

 

(i) Macro consumers- They feed on plants or animals or both and are categorised on the basis of their food sources.

Herbivores are primary consumers which feed mainly on plants e.g. cow, rabbit.

Secondary consumers feed on primary consumers e.g. wolves.

Carnivores which feed on secondary consumers are called tertiary consumers e.g. lions which can eat wolves.

Omnivores are organisms which consume both plants and animals e.g. man.

 

(ii) Micro consumers – Saprotrophs (decomposers or osmotrophs)

 

They are bacteria and fungi which obtain energy and nutrients by decomposing dead organic substances (detritus) of plant and animal origin.

The products of decomposition such as inorganic nutrients which are released in the ecosystem are reused by producers and thus recycled.

Earthworm and certain soil organisms (such as nematodes, and arthropods) are detritus feeders and help in the decomposition of organic matter and are called detrivores.

ECOLOGY- An Introduction

 

 

Ecology is  defined “as a scientific study of the relationship of the living organisms with each other and with their environment.”

The classical texts of the Vedic period such as the Vedas, the Samhitas, the Brahmanas and the Aranyakas-Upanishads contain many references to ecological concepts .The Indian treatise on medicine, the Caraka- Samhita and the surgical text Susruta-Samhita. contain classification of animals on the basis of habit and habitat, land in terms of nature of soil, climate and vegetation; and description of plants typical to various localities.

Caraka- Samhita contains information where air, land, water and seasons were indispensable  for life and that polluted air and water were injurious for health.

The environment is defined as ‘the sum total of living, non-living components;  influences and events, surrounding an organism.

Components of Environment

  1. Abiotic – Energy, Radiation, TEMP, Water, etc.
  2. Biotic- plants, animals, man, DECOMPOSER ETC.

Diesel engine exhaust fumes can cause cancer, humans” and it belong to the same potentially deadly category as asbestos, arsenic and ‘mustard gases.

Six main levels of organisation of ecology are:

  1. Individual- Organism is an individual living being that has the ability to act or function independently.
  2. Population-Population is a group of organisms usually of the same species,

occupying a defined area during a specific time,

  1. Community- Communities in most instances are named after the dominant plant form

(species). A community is not fixed or rigid; communities may be large or small.

Types of Community-

On the basis of size and degree of relative independence communities may be divided into two types-

(a)  Major Community

These are large-sized, well organized and relatively independent. They depend

only on the sun’s energy from outside and are independent of the inputs and

outputs from adjacent communities.

E.g: tropical ever green forest in the North-East

 

(b) Minor Communities

These are dependent on neighbouring communities and are often called societies.

They are secondary aggregations within a major community and are not therefore completely independent units as far as energy and nutrient dynamics are concerned.

e.g: A mat of lichen on a cow dung pad.

The environmental factors determine the characteristic of the community as well as the pattern of organisation of the members in the community

The characteristic pattern of the community is  termed as structure which is reflected in the roles played by various population, their range, the  type of area they inhabit, the diversity of species in the community and the spectrum of interactions between them

Eco-System-An ecosystem is defined as a structural and functional unit of biosphere consisting of community of living beings and the physical environment, both interacting and exchanging materials between them. It includes plants, trees, animals, fish, birds, micro-organisms, water, soil, and  people.

When an ecosystem is healthy (i.e. sustainable) it means that all the elements live in balance and are  capable of reproducing themselves

Continental Drift Theory – Tectonics

 

The continental drift theory is the theory that once all the continents were joined in a super-continent, which scientists call Pangaea. Over a vast period of time, the continents drifted apart to their current locations. Alfred Wegener first supported continental drift.

Wegener’s explanation of continental drift in 1912 was that drifting occurred because of the earth’s rotation. Fossil records from separate continents, particularly on the outskirts of continents show the same species.

Orogenic or the mountain-forming movements

 

Orogenic or the mountain-forming movements act tangentially to the earth surface, as in plate tectonics.

Tensions produces fissures (since this type of force acts away from a point in two directions) and compression produces folds (because this type of force acts towards a point from two or more directions). In the landforms so produced, the structurally identifiable units are difficult to recognise.

In general, diastrophic forces which have uplifted lands have predominated over forces which have lowered them.

Orogenic- mountain-forming movements

Sudden Movements

These movements cause considerable deformation over a short span of time, and may be of two types.

Earthquake

It occurs when the surplus accumulated stress in rocks in the earth’s interior is relieved through the weak zones over the earth’s surface in form of kinetic energy of wave motion causing vibrations (at times devastating) on the earth’s surface. Such movements may result in uplift in coastal areas.

An earthquake in Chile (1822) caused a one-metre uplift in coastal areas.

An earthquake in New Zealand (1885) caused an uplift of upto 3 metres in some areas while some areas in Japan (1891) subsided by 6 metres after an earthquake.

Earthquakes may cause change in contours, change in river courses, ‘tsunamis’ (seismic waves created in sea by an earthquake, as they are called in Japan) which may cause shoreline changes, spectacular glacial surges (as in Alaska), landslides, soil creeps, mass wasting etc.

Volcanoes

Volcanism includes the movement of molten rock (magma) onto or toward the earth’s surface and also formation of many intrusive and extrusive volcanic forms.

A volcano is formed when the molten magma in the earth’s interior escapes through the crust by vents and fissures in the crust, accompanied by steam, gases (hydrogen sulphide, sulphur dioxide, hydrogen chloride, carbon dioxide) and pyroclastic material. Depending on chemical composition and viscosity of the lava, a volcano may take various forms.

Pyroclastic  adjective of or denoting rock fragments or ash erupted by a volcano, especially as a hot, dense, destructive flow.

Earth Movements – Endogenetic Movements

 

The interaction of matter and temperature generates these forces or movements inside the earth’s crust. The earth movements are mainly of two types: diastrophism and the sudden movements.

The energy emanating from within the earth is the main force behind endogenic geomorphic processes.

This energy is mostly generated by radioactivity, rotational and tidal friction and primordial heat from the origin of the earth. This energy due to geothermal gradients and heat flow from within induces diastrophism and volcanism in the lithosphere.

Diastrophism

Diastrophism is the general term applied to slow bending, folding, warping and fracturing.

Wrap == make or become bent or twisted out of shape, typically from the action of heat or damp; make abnormal; distort.

All processes that move, elevate or build up portions of the earth’s crust come under diastrophism. They include:

orogenic processes involving mountain building through severe folding and affecting long and narrow belts of the earth’s crust;

epeirogenic processes involving uplift or warping of large parts of the earth’s crust;

earthquakes involving local relatively minor movements;

plate tectonics involving horizontal movements of crustal plates.

In the process of orogeny, the crust is severely deformed into folds. Due to epeirogeny, there may be simple deformation. Orogeny is a mountain building process whereas epeirogeny is continental building process.

Through the processes of orogeny, epeirogeny, earthquakes and plate tectonics, there can be faulting and fracturing of the crust. All these processes cause pressure, volume and temperature (PVT) changes which in turn induce metamorphism of rocks.

Epeirogenic or continent forming movements

In geology, Epeirogenic movement refers to upheavals or depressions of land exhibiting long wavelengths [undulations] and little folding.

The broad central parts of continents are called cratons, and are subject to epeirogeny.

The movement is caused by a set of forces acting along an Earth radius, such as those contributing to Isostacy and Faulting in the lithosphere

Epeirogenic or continent forming movements act along the radius of the earth; therefore, they are also called radial movements. Their direction may be towards (subsidence) or away (uplift) from the center. The results of such movements may be clearly defined in the relief.

Uplift

Raised beaches, elevated wave-cut terraces, sea caves and fossiliferous beds above sea level are evidences of uplift.

Raised beaches, some of them elevated as much as 15 m to 30 m above the present sea level, occur at several places along the Kathiawar, Nellore, and Thirunelveli coasts.

Several places which were on the sea some centuries ago are now a few miles inland. For example, Coringa near the mouth of the Godavari, Kaveripattinam in the Kaveri delta and Korkai on the coast of Thirunelveli, were all flourishing sea ports about 1,000 to 2,000 years ago.

Epeirogenic movement – uplift

Subsidence

Submerged forests and valleys as well as buildings are evidences of subsidence.

In 1819, a part of the Rann of Kachchh was submerged as a result of an earthquake.

Presence of peat and lignite beds below the sea level in Thirunelveli and the Sunderbans is an example of subsidence.

The Andamans and Nicobars have been isolated from the Arakan coast by submergence of the intervening land.

Epeirogenic movement – subsidence – arakan yomaEpeirogenic movement – subsidence – arakan yoma

On the east side of Bombay island, trees have been found embedded in mud about 4 m below low water mark. A similar submerged forest has also been noticed on the Thirunelveli coast in Tamil Nadu.

A large part of the Gulf of Mannar and Palk Strait is very shallow and has been submerged in geologically recent times. A part of the former town of Mahabalipuram near Chennai (Madras) is submerged in the sea.

Earth’s Layers – Earth’s Composition

 

The Crust of Earth

It is the outermost and the thinnest layer of the earth’s surface, about 8 to 40 km thick. The crust varies greatly in thickness and composition – as small as 5 km thick in some places beneath the oceans, while under some mountain ranges it extends up to 70 km in depth.

The crust is made up of two layers­ an upper lighter layer called the Sial (Silicate + Aluminium) and a lower density layer called Sima (Silicate + Magnesium).The average density of this layer is 3 gm/cc.

The Mantle of Earth

This layer extends up to a depth of 2900 km.

Mantle is made up of 2 parts: Upper Mantle or Asthenosphere (up to about 500 km) and Lower Mantle. Asthenosphere is in a semi­molten plastic state, and it is thought that this enables the lithosphere to move about it. Within the asthenosphere, the velocity of seismic waves is considerably reduced (Called ‘Low Velocity

The line of separation between the mantle and the crust is known as Mohoviricic Discontinuity.

 

The Core of Earth

Beyond a depth of 2900 km lies the core of the earth.The outer core is 2100 km thick and is in molten form due to excessive heat out there. Inner core is 1370 km thick and is in plasticform due to the combined factors of excessive heat and pressure. It is made up of iron and nickel (Nife) and is responsible for earth’s magnetism. This layer has the maximum specific gravity.The temperatures in the earth’s core lie between 2200°c and 2750°c. The line of separation between the mantle and the core is called Gutenberg­Wiechert Discontinuity.