Origin and evolution of earth

 

 

Beginning of the Universe started about 13.6 billion years ago,when the Big Bang created the universe from a point source.
During this process, Light Elements, like H, He, Li, B, and Be formed. From this point in time, the universe began to expand and has been expanding ever since.
Concentrations of gas and dust within the universe eventually became galaxies consisting of millions of stars.
Within the larger stars, nuclear fusion processes eventually created heavier elements, like C, Si, Ca, Mg, K, and Fe.
Stars eventually collapse and explode during an event called a supernova. During a supernova, heavier elements, from Fe to U, are formed. (See figure 1.9 in your text).
Throughout galaxies clusters of gas attracted by gravity start to rotate and accrete to form stars and solar systems. For our Solar System this occurred about 4.6 billion years ago.
The ball at the center grows dense and hot, eventually nuclear fusion reactions start and a star is born (in our case, the sun).
Rings of gas and dust orbiting around the sun eventually condenses into small particles. These particles are attracted to one another and larger bodies called planetismals begin to form.
Planetesimals accumulate into a larger mass. An irregularly-shaped proto-Earth develops.
The interior heats and becomes soft. Gravity shapes the Earth into a sphere. The interior differentiates into a nickel-iron core, and a stony (silicate) mantle.
Soon, a small planetoid collides with Earth. Debris forms a ring around the Earth.The debris coalesces and forms the Moon.
The https://exam.pscnotes.com/atmosphere”>Atmosphere develops from volcanic gases. When the Earth becomes cool enough, moisture condenses and accumulates, and the Oceans are born.

WHITE REVOLUTION IN INDIA

IN INDIA

 

  • The package programme adopted to increase the production of milk is known as WHITE REVOLUTION IN INDIA.
  • The White Revolution in India occurred in 1970, when the National Dairy Development Board (NDDB) was established to organize the dairy development through the co-operative societies.
  • Varghese Kuerin was the father of White Revolution in India.
  • The dairy development programme through co-operative societies was first established in the state of Gujarat.
  • The co-operative societies were most successful in the Anand District of Gujarat. The co-operative societies are owned and managed by the milk producers.
  • These co-operatives apart from financial help also provide consultancy.
  • The increase in milk production has also been termed as Operation Flood.

Objectives

  1. The procurement, transportation, storage of milk at the chilling Plants.
  2. Provide cattle feed.
  3. Production of wide varieties of milk products and their Marketing-management”>MARKETING MANAGEMENT.
  4. Provide superior breeds of cattle (cows and buffaloes), Health service, veterinary treatment, and artificial insemination facilities.
  5. Provide extension service.

 

Achievements

  • Some of the important achievements of the White Revolution are as under:
  1. The White Revolution made a Sound impact on rural masses and encouraged them to take up dairying as a subsidiary occupation.
  2. India has become the leading producer of milk in the world.
  3. The import of milk and milk production has been reduced substantially.
  4. The small and marginal farmers and the landless labourers have been especially benefitted from the White Revolution.
  5. To ensure the success of Operation Flood Programme, research centres have been set up at Anand, Mehsana, and Palanpur (Banaskantha). Moreover, three regional centres are functioning at Siliguri, Jalandhar, and Erode. Presently, there are metro dairies in 10 metropolitan cities of the country, beside 40 plants with capacity to handle more than one lakh litres of milk.
  6. Livestock Insurance Scheme was approved in February 2006 and in 2006-07 on a pilot basis in 100 selected districts across the country. The scheme aims at protecting the farmers against losses due to untimely 2. In most of the villages the cattle are kept under unhygienic conditions.death of animals.
  7. To improve the quality of livestock, extensive cross breeding has been launched.
  8. For ensuring the maintenance of disease-free status, major health schemes have been initiated.
  9. The government implemented livestock insurance on pilot basis in 2005-06.

 

Problems and Prospects

  1. Collection of milk from the remote areas is expensive, time consuming, and not viable economically.
  2. In most of the villages the cattle are kept under unhygienic conditions.
  3. There are inadequate marketing facilities. The marketing Infrastructure needs much improvement.
  4. The breeds of cattle is generally inferior.
  5. The extension service programme is not effective.

 

SERICULTURE IN INDIA

SERICULTURE IN INDIA

Production

  • Silkworm larvae are fed on mulberry leaves and after the fourth molt, they climb a twig placed near them and spin their silken cocoons.
  • The silk is a continuous-filament fibre consisting of fibroin protein, secreted from two salivary glands in the head of each larva, and a gum called sericin, which cements the two filament together.
  • The sericin is removed by placing the cocoons in hot water, which frees silk filaments and readies them for reeling.
  • The immersion of cocoons in hot water also kills the silkworm larvae.
  • In India, silk worms thrive on the leaves of mulberry, mahua, sal, ber, and kusum trees. India ranks third among the silk producing countries of the world.
  • Silk production is mainly confined to areas between 15° and 34° N latitudes.
  • The state of Karnataka is the largest producer of raw silk (65°/o) followed by Andhra Pradesh (17%) West Bengal (8°/o), Nadu (5°/o), and Assam (3%).

 

Physical factors: Terrain, topography, climate, and soil. which determine agriculture

Physical Factors:


(a) Terrain, Topography, and Altitude

  1. dependent on the geo-ecological conditions; terrain, topography, slope and altitude.
  2. paddy cultivation requires leveled fields, tea plantations perform well in the undulating topography in which water does not remain standing.
  3. Orchards of coconut are found at low altitudes, preferably closer to the sea level, while the apple orchards in the tropical and sub-tropical conditions perform well above 1500 metres above sea level.
  4. Cultivation of crops is rarely done 3500 m above sea-level in the tropical and sub-tropical latitudes.
  5. highly rarified air, low-pressure, low temperature, and shortage of Oxygen at high altitudes are the serious impediments not only in the cultivation of crops, but also in keeping cattle.
  6. soils of high mountainous tracts are generally immature which are also less conducive for Agriculture-notes-for-state-psc-exams”>Agriculture.
  7. topographical features also affect the distribution of rainfall.
  8. the windward side gets more rainfall than the leeward side.
  9. Apart from altitude and aspects of slope, the nature of the surface also affects the agricultural activities.
  10. gullied land is least conducive for Cropping.
  11. The Chambal ravines in Madhya Pradesh, Rajasthan, and Uttar Pradesh have put over thousands of hectares of good arable land out of agriculture.

(b) Climate

(1) Temperature:

  • The crops to be grown, their patterns and combinations controlled by the temperature and Precipitation conditions.
  • each crop has a specific zero temperature below which it can not be grown.
  • also an optimal temperature in which the crop is at its greatest vigour.
  • For each stage of crop life, i.e. germination, foliation, blossoming or fructification a specific zero and optimum can be observed in temperature.
  • The upper limit of temperature for Plants Growth is 60°C under high temperature conditions, i.e. at over 40°C, crops dry up, if the moisture supply is inadequate.
  • In contrast to this, the chilling and freezing temperatures have a great adverse effect on the germination, growth and ripening of crops.
  • Crops like rice, sugarcane, jute, Cotton, chilli and tomatoes are killed or damaged at the occurrence of frost.
  • minimum temperature for wheat and barley is 5°C, maize 10°C, and rice 20°C.
  • impact of temperature on cropping patterns may be seen from the fact that the northern limit of the regions in which date-palm bear ripe fruit coincides almost exactly with the mean annual temperature of 19°C.
  • essential factor in the limit of grape orchards seem to be temperature. Grapes ripen only in those countries in which the mean temperature from April to October exceeds 15° C.
  • Crops like winter-wheat and barley perform well when the mean daily temperature ranges between 15°C and 25°C.
  • tropical crops like cocoa, coffee, spices, squash, rubber and tobacco require over 18° C temperature even in the coldest months, while crops like wheat, gram, peas, lentil, potato, mustard, and rapeseed require a temperature of about 20°C during the growth and development, stage and relatively higher (over 25°C) during the sowing and harvesting periods.

 

(2) Moisture:

  • All crops need moisture.
  • Take water and moisture from the Soil.
  • Available from the rains or from Irrigation systems.
  • Within wide temperature limits, moisture is more important than any other climatic factor in crop production.
  • There are optimal moisture conditions for crop development just as there are optimal temperature conditions.
  • Excessive amount of water in the soil alters various chemical and biological processes, limiting the amount of oxygen and increasing the formation of compounds that are toxic to plant roots.
  • Excess of water in the soil, therefore, leads to stunted growth of plants.
  • The problem of inadequate oxygen in the soil can be solved by drainage practices in an ill-drained tract. Heavy rainfall may directly damage plants or interfere with flowering and pollination.
  • Cereal crops are often lodged by rain and this makes harvest difficult and promotes spoilage and diseases.
  • Heavy rainfall at the maturity of wheat, gram, Millets, oilseeds, and mustards cause loss of grains and fodder.
  • Indian farmers all over the country have often suffered on account of failure of rains or fury of floods.

(3) Drought:

  • Devastating consequences on the crops, their yields and production.
  • Soil drought has been described as a condition in which the amount of water needed for Transpiration and direct Evaporation exceeds the amount of water available in the soil.
  • Damages the crops when plants are inadequately supplied with moisture from the soil.
  • drought prone areas of India lie in the states of Rajasthan, Gujarat, Madhya Pradesh, Chhattisgarh, Jharkhand, Maharashtra, Andhra Pradesh, Karnataka, Tamil Nadu, Orissa, Bundelkhand (U.P.), Uttarakhand, H.P.J&K, south-west Punjab and Haryana.
  • Where the Average annual rainfall is less than 75 cm, agriculture is considered a gamble on monsoon.
  • The incidence of drought and its intensity can be determined from the annual, seasonal and diurnal distribution of rainfall.
  • drought prone areas of India, dry farming is practiced, while in the more rainfall recording regions, intensive agriculture of paddy crop is a common practice.

(4) Snow:

  • Occurrence of snow reduces the ground temperature which hinders the germination and growth of crops.
  • Land under snow cannot be prepared for sowing because of permafrost.
  • Melting of snow may cause hazardous floods in the summer season, affecting the crops, Livestock, and land property adversely.

(5)Winds

  • Have both, direct and indirect effects on crops.
  • Direct winds result in the breaking of plant structure, dislodging of Cereals, fodder and Cash Crops and shattering of seed-heads.
  • Fruit and nut crops may be stripped from the trees in high winds.
  • Small plants are sometimes completely covered by wind-blown dust or sand.
  • The indirect effect of winds are in the form of transport of moisture and heat in the air.

(c) Soils

  • Important determining physical factor.
  • Determines the cropping patterns, their associations and production.
  • Fertility of soil, its texture, structure and humus contents have a direct bearing on crops and their productivity.
  • The alluvial soils are considered to be good for wheat, barley, gram, oilseeds, pulses, and sugarcane; while the clayey loam gives good crop of rice.
  • Regur soil is known for cotton, and sandy soil for bajra, guar, pulses (green-gram, black-gram, red-gram, etc.).
  • The saline and alkaline soils are useless from the agricultural point of view unless they are reclaimed by chemical fertilisers and biological manures and fertilisers.

 

 Insolation,heat budget of the earth

 

 

The ultimate source of atmospheric energy is in fact heat and Light received through space from the Sun. This energy is known as solar insolation. The Earth receives only a tiny fraction of the total amount of Sun’s radiations. Only two billionths or two units of energy out of 1,00,00,00,000 units of energy radiated by the sun reaches the earth’s surface due to its small size and great distance from the Sun. The unit of measurements of this energy is Langley (Ly). On an Average the earth receives 1.94 calories per sq. cm per minute (2 Langley) at the top of its https://exam.pscnotes.com/atmosphere”>Atmosphere.

Incoming solar radiation through short waves is termed as insolation. The amount of insolation received on the earth’s surface is far less than that is radiated from the sun because of the small size of the earth and its distance from the sun. Moreover water vapour, dust particles, ozone and other gases present in the atmosphere absorb a small amount of insolation.

The amount of insolation received on the earth’s surface is not uniform everywhere. It varies from place to place and from time to time. The tropical zone receive the maximum annual insolation. It gradually decreases towards the poles. Insolation is more in summers and less in winters.
The following factors influence the amount of insolation received.
(i) The angle of incidence:-The angle formed by the sun’s ray with the tangent of the earth’s circle at a point is called
angle of incidence. It influences the insolation in two ways. First, when the sun is almost overhead, the rays of the sun are vertical. The angle of incidence is large hence, they are concentrated in a smaller area, giving more amount of insolation at that place. If the sun’s rays are oblique, angle of incidence is small and sun’s rays have to heat up a greater area, resulting in less amount of insolation received there. Secondly, the sun’s rays with small angle, traverse more of the atmosphere, than rays striking at a large angle. Longer the path of sun’s rays, greater is the amount of reflection and absorption of heat by atmosphere. As a result the intensity of insolation at a place is less.
(ii) Duration of the day. (daily sunlight period) :-The duration of day is controlled partly by latitude and partly by the season of the year. The amount of insolation has close relationship with the length of the day. It is because insolation is received only during the day. Other conditions remaining the same, the longer the days the greater is the amount of insolation. In summers, the days being longer the amount of insolation received is also more. As against this in winter the days are shorter the insolation received is also less. On account of the inclination of the earth on its axis at an angle of 23 ½ , rotation and revolution, the duration of the day is not same everywhere on the earth. At the equator there is 12 hours day and night each throughout the year. As one moves towards poles duration of the days keeps on increasing or decreasing. It is why the maximum insolation is received in equatorial areas.

(iii) Transparency of the atmosphere.Transparency of the atmosphere: Transparency of the atmosphere also determines the amount of insolation reaching the earth’s surface. The transparency depends upon cloud cover, its thickness, dust particles and water vapour, as they reflect, absorb or transmit insolation. Thick clouds hinder the insolation to reach the earth while clear sky helps it to reach the surface. Water vapour absorb insolation, resulting in less amount of insolation reaching the surface.

Heat Budget

Energy emitted by the Earth’s Climate system tends to maintain a balance with Solar Energy coming into the system. This balance, known as the radiation budget, allows the Earth to maintain the moderate temperature range essential for life as we know it.
There is positive radiation balance between 35°S and 40°N, which drives the weather systems. Ocean currents even out the difference
When incoming short-wave solar radiation (Figure 3), known as insolation, enters the Earth’s climate system, a portion of it is absorbed at the Earth’s surface, causing the surface to heat up. Some of the absorbed energy is then radiated outward in the form of long-wave infrared radiation. Cloud layers trap some of the radiation from the Earth’s surface, and then emit long-wave radiation, both outward and back to the surface. The temperature of the Earth’s surface is about 33°C higher due to long-wave radiation contribution from the atmosphere .
The amount of radiation emitted by the Earth’s surface that makes it back to space is the result of many interrelated influences, such as the amount of cloud cover, cloud heights, characteristics of cloud droplets, amount and distribution of water vapor and other greenhouse gases, land features, surface temperature, and the transparency of the atmosphere. In the warm tropical areas, low values of outgoing longwave radiation (OLR) correspond to large amounts of high, cold clouds while high values of OLR correspond to relatively clear areas or cloudy areas with low, warm clouds. In the extra-tropics OLR values typically decrease with decreasing temperature.

Let us suppose that the total heat (incoming solar radiation) received at the top of the atmosphere is 100 units (see fig. 10.2) Roughly 35 units of it are reflected back into space even before reaching the surface of the earth. Out of these 35 units, 6 units are reflected back to space from the top of the atmosphere, 27 units reflected by clouds and 2 units from the snow and ice covered surfaces.
Out of the remaining 65 units (100-35), only 51 units reach the earth’s surface and 14 units are absorbed by the various gases, dust particles and water vapour of the atmosphere.
The earth in turn radiates back 51 units in the form of terrestrial radiation. Out of these 51 units of terrestrial radiation, 34 units are absorbed by the atmosphere and the remaining 17 units directly go to space. The atmosphere also radiates 48 units (14 units of incoming radiation and 34 units of outgoing radiation absorbed by it) back to space. Thus 65 units of solar radiation entering the atmosphere are reflected back into the space. This account of incoming and outgoing radiation always maintains the balance of heat on the surface of the earth.

Indian Agriculture- Current Status, Issues & initiatives.

Indian Agriculture

  • Mainstay of Indian Economy
  • Since independence, undergone a change from being the sector contributing the highest share to the GDP to one contributing the lowest share.
  • Agriculture is a state subject.
  • GDP contribution (Agriculture and allied sector)
    • 5 pc in 1950-51
    • 7 pc in 2008-09 and 14.6 pc in 2009-10. It was 19 pc in 2004-05. (2004-05 prices)
    • Agricultural GDP grew by 0.4 pc in 2009-10 and -0.1 pc in 2008-09.
  • Employment
    • 9 pc in 1961
    • 9 pc in 1999-2000
    • 2 pc in 2008-09
    • 1999-2000: Number at 237.8 million
  • GCF
    • Share in total GCF 2009-10: 7.7 pc (2004-05 prices)
    • GCF as % of agricultural GDP: 2007-08 – 16.3, 2008-09(P) – 19.67, 2009-10(QE) – 20.3
    • GCF as % of total GDP: 2007-08 – 2.69, 2008-09P – 3.09, 2009-10QE – 2.97
  • Contributes to agricultural growth and industrial demand
  • Contributed 10.59 pc of total exports in 2009-10.
  • Due to the large number of workforce in this sector, the growth of agriculture is a necessary condition for inclusive growth.
  • Food grains production
    • Highest in 2008-09: 234. 47 mn t
    • 2009-10: 218.11 mn t

Agriculture and Industry

  • Agriculture as
    • Supplier of wage goods to the industrial sector
    • Provider of raw materials
    • Consumer of agricultural capital goods produced by industry
  • Stagnation in agriculture
    • Get data on CAGR

Land Reforms

  • Great scarcity and uneven distribution of land
  • Focus of agricultural policies in the initial years was on institutional changes through land reforms
  • Two objectives of land reforms in India
    • To remove the impediments to agriculture that arise due to the character of agrarian structure in rural areas
    • To reduce or eliminate the exploitation of tenants/small farmers
  • Four main areas of land reforms in India
    • Abolition of intermediaries (zamindars)
    • Tenancy reforms
    • Land ceilings
    • Consolidation of disparate land holdings
  • Economic arguments for land reforms
    • Equity
    • Small farms tend to be more productive than large farms
    • Owner cultivated plots of land tend to be more productive that those under sharecropped tenancy
  • Abolition of zamindari was successful while the other three areas of land reforms met with limited success
  • Operation Bargha. Also, LR in Kerala
  • Regional trends in LR
  • Effect of land reforms
    • On tenants
      • Absentee landlordism declined
      • Tenancy declined. In some cases, tenants were evacuated from the land.
      • In some cases there was a drift of tenants into landless
      • Where tenants had not been evicted, tenancy was pushed underground
    • On equity
    • On productivity
    • On agrarian power relations
  • The National Commission on Farmers has placed the unfinished agenda in land reform first in its list of five factors central overcome an agrarian crisis
  • Way forwards
    • Land reforms that make tenancy legal and give well defined rights to tenants, including women, are now necessary

Technology and Green Revolution

  • In the early 60s India faced several crises
    • It had to fight two wars: Pakistan and China
    • Severe drought in 1965 and 1966
    • US was using PL-480 food supply as a means to twist India’s arms to meet US interests
  • This called for an overhaul of the agricultural strategy and the need to be self-sufficient in food production
  • Three phases of green revolution
    • 1966-1972
    • 1973-1980
    • 1981-1990
  • 1966-1972
    • C Subramaniam and MSS
    • 1965: Agricultural Prices Commission and Food Corporation of India set up
    • Introduction of HYV seed of wheat from Mexico created by CIMMYT
    • Under the new agricultural policy, the spread of HYVs was supported by public investments in fertilisers, power, irrigation and credit
    • Food grain production shot up
      • 1966-67: 74 mt
      • 1971-72: 105 mt
    • India became nearly self-sufficient in food grains
    • What led to the increased production?
      • Favourable pricing policy led to adequate incentives
      • National research system proceeded to indigenise the new seeds to tackle their shortcomings
      • Availability of inputs including canal water, fertilisers, power and credit
      • Subsidies
      • Role of credit began to be important after 1969
    • 1973-1980
      • This phase saw many challenges
      • Consecutive droughts in 1972-73
      • Oil shock
      • Production fell. Imports began again.
      • Thereafter, government increased fertiliser subsidies
      • Groundwater irrigation increased in  importance
      • HYV technology extended from wheat to rice
    • 1981-1990
      • 1986
        • Rice prod: 63.8 mt (1964: 37)
        • Wheat prod: 47 mt (1964: 12 mt)
      • Even when the ‘worst drought of the century’ struck in 1987, food needs could be adequately met due to buffer stocks
      • HYV technology spread eastward to states like West Bengal and Bihar
      • The impact of HYV technology had started to plateau however
      • Input subsidies kept on increasing
      • 1991: Input subsidy was 7.2 pc of agricultural GDP
    • What was the impact of highly regulated policies on agriculture?
      • There were barriers on pricing, movement and private trading of agricultural produce
      • The external sector was burdened with various tariff and non-tariff barriers to agricultural trade flows
      • The overvalued rupee produced an anti-export environment for agriculture
      • High protection to industry produced high industrial prices and adverse terms of trade for agriculture, reducing the relative profitability of the primary sector
    • What was the aim of agricultural pricing in pre-reform era?
      • Ensure inexpensive food for consumers
      • Protect farmers’ incomes from price fluctuations
      • Keep the balance of payments in check
    • Agriculture in post-reform era
      • Impact: 1. Growth in PCI led to an increase in food demand and also diversification. Terms of trade between agricultural and industrial prices improved in favour of agriculture
      • Increased profitability has led to increase in private investments which are now double the public investment in agriculture.
      • Growth rates
        • 1980s: 3 pc
        • 1990s:
        • 2000s:
        • Tenth Plan: 2.47 pc (as against 7.77 pc of overall economic growth)
      • This has however not translated into reduction of poverty
      • There has been an increase in both urban and rural inequality
    • Deceleration in agricultural growth
      • Declined during 90s
      • Deceleration in the growth of area, production and yield
      • Food production of Rabi crops has off late equalled the Kharif crops. This has to an extent reduced the over dependence on monsoon and imparted some stability to agricultural production
      • Area-wise, the deceleration was more in case of the Indo-Gangetic region
    • The instability in agricultural growth is more in states with high percentage of rain-fed areas
    • Acreage: declining trend in most crops during the period 1995-96 to 2004-05
    • Productivity: sharp decline (1995-2005). Healthy performance of cotton and maize though

Major factors affecting growth potential

  • Lack of long term policy perspective
    • No long term strategy for agricultural development
    • National Agricultural Policy was announced only in the year 2000
    • Sectoral priority to industry from the second FYP
    • Weaknesses of policies followed for agricultural development
      • Policies provided little incentives for the farmers as the prices were depressed and the sector was disprotected vis a vis other sectors of the economy
      • Inward-looking policies
      • Excessive price based focus than non-price factors like water, infrastructure, R&D, extension services etc
    • Investment in Agriculture and Subsidies
      • There have been cutbacks in agricultural investment and extension, but not in subsidies
      • Agricultural subsidy as pc of GDP:
      • Public investment in agriculture declined from 4 pc of agriculture GDP in 1976-1980 to
      • Subsidies on fertiliser, power and irrigation have contributed to soil degradation
      • It is important to reduce subsidies and increase public investment in crucial areas such as soil amelioration, watershed development, groundwater recharge, surface irrigation and other infrastructure
      • Public Sector GCF in agriculture stood at less than Rs 50 bn at 1993-94 prices
      • It is imperative to reduce these subsidies for stepping up public investment in agriculture
      • After 2003, the investments have started to increase. In  2006-07 public sector GCF was 3.7 pc of agricultural GDP and  total GCF was 12.5 pc of agricultural GDP
      • Three areas should get priority in public investments
        • Rural roads
        • Electricity
        • Irrigation projects
        • <all three of them are under Bharat Nirman project>
      • Complimentarity between public and private sector capital formation in agricultural sector. Public sector can create infrastructure while the private investment is essential for short term asset building mainly in the areas of mechanisation, ground levelling, private irrigation etc
    • Lagging research and development efforts
      • After the green revolution, there has been no major breakthrough in agricultural research. GM is a promising area but its safety has not yet been conclusively established.
      • Poor productivity in India compared to other countries and even compared to world average
      • India, however, has the largest public agricultural research establishment in the world. ICAR and agricultural universities
      • India spends only 0.3 pc of agricultural GDP for research as compared to 0.7 pc in other developing countries and 2-3 pc in case of developed countries.
      • There is hardly any scope for expansion of area. Hence, productivity must increase to keep up with the increasing demand. R&D has a lot of role to play here
      • New varieties of seeds need to be developed suited to different regions of the country
      • The research system should be responsive to the changing needs and circumstances
    • Technology generation and dissemination
      • Fixed land. Hence technology
      • Focus on yield as well as sustainable use of land
      • Focus should be on specific requirements of each agro-climatic region
      • Ned to develop much stronger linkages between extension and farmers
    • Rising soil degradation and over-exploitation of groundwater
      • Around 40 pc of Indian’s total geographical area are officially estimated as degraded
      • Soil health is deteriorating in Punjab and Haryana
    • Degradation of natural resources
    • Subsidies vis-a-vis investments and farm support systems
    • Agriculture’s terms of trade and farm price volatility
      • Ensure rapid development of backward farm linkages
    • Summary: Need to correct the policy bias against agriculture, make higher investments, develop new varieties of seeds, conserve natural resources like land and water and provide incentives to the farmers to adopt modernisation

 

Some Issues in Indian Agriculture

  • Low public investment
  • Halt in the modernization of agriculture
  • Agricultural indebtedness
  • Farmer suicides
  • Agricultural imports and future markets

Subsidies

  • Talk about bringing urea under the Nutrient Based Subsidy (NBS) system and decontrolling its prices
  • Downsides
    • Fertilizer subsidy touched almost 1 lakh crore in 2008-09
    • Promotes overuse of fertiliser and thereby catalysing soil degradation
    • As a result, agricultural production in the bread baskets of the country has stagnated, posing a threat to the food security of the country
    • Drylands do not receive the benefit of crores of subsidy given in fertilizers

Government Intitiatives

  • Green Revolution
  • National Policy on Agriculture, 2002
  • National Policy for Farmers, 2007
    • Major policy provisions include provisions for asset reforms, water use efficiency, use of technology, inputs and services like soil health, good quality seeds, credit, support for women etc
    • Focus on millets as well

Agriculture during the 11th plan

  • Flagship schemes
    • Rashtriya Krishi Vikas Yojana
    • National Food Security Mission
    • National Horticulture Mission (2005-06)
    • Integrated Scheme of Pulses, Oilseeds and Maize
    • Technology Mission for Integrated Development of Horticulture in North-east and Himalayan States (2001-02)
    • National Mission for Sustainable Agriculture
    • National Mission on Micro Irrigation was launched in 2010 in addition to the earlier Micro Irrigation Scheme launched in 2006
    • National Bamboo Mission
  • Avg growth of 2.03 pc against the Plan target of 4 pc per annum.
  • For sustainable and inclusive growth
    • Must focus on the small and marginal farmers as well as female farmers
    • Group approach should be adopted so that they can reap economies of scale
    • Bring technology to farmers
    • Improving efficiency of investments
    • Diversifying while also protecting food security concerns
    • Fostering inclusiveness through a group approach
  • Irrigation
    • Envisages creation of an additional potential of 16 mn ha
    • Bharat Nirman aims to bring an additional 1 crore ha of land under irrigation by 2012
    • Accelerated Irrigation Benefits Programme still on

Irrigation

  • 45 pc of nearly 175 mn ha of cropped area is irrigated
  • Trends
    • Nearly trebled from 24 mn ha in 1953-64 to 75 mn ha in 1998-99
    • It accounts for the largest part of total investments in the agricultural sector
    • Importance of ground water as an irrigation source has also increased considerably
  • Uneven access
    • Inter-regional variance
    • Inequality in access within the farming population
  • Areas of concern
    • Depletion of ground water
    • Environmental concerns
    • Costs
  • Steps to take
    • Improving water use efficiency
    • Water governance
    • Economic incentives for efficient use
  • Govt Schemes
    • Accelerated Irrigation Benefits Programme was started during 1996-97. It extends assistance for the completion of incomplete irrigation schemes
  • In 11th FYP – refer previous section

Way Forward

  • Second green revolution (?)
  • Relook at all the issues offering forward and backward linkages in the agricultural production cycle
  • Focus on oilseeds, pulses and coarse cereals
  • Coarse cereals: high nutrition, can be grown in dry areas, enhance fertility of soil in rotation
  • PDS should be reformed: coarse cereals should also be provided through PDS
  • Timely availability of credit at affordable costs
  • Wider extension of insurance facilities to the farm sector
  • Water and irrigation infrastructure
  • Drip irrigation
  • Organic manures should be popularized and their commercial production encouraged
  • Educate farmers about technology and agricultural techniques

Food Security

  • Food security should also incorporate nutritional security. This requires emphasising the increase in production of pulses, fruits, vegetables, poultry and meat.
  • Interpreted broadly
  • Includes nutritional security which particularly incorporates maternal health and infant health due to the involvement of the nutritional aspect
  • Also covers employment security (?)
  • Affordability, accessibility and availability
  • Food security seeks to address all the three dimensions of hunger: chronic, hidden and transient
  • It also is the first step towards inclusive development

Public Distribution System

  • High procurement prices

Irrigation

  • The total irrigation potential in the country has increased from 81.1 mn hectares in 1991-92 to 108.2 mn hectares in March 2010.
  • 1996-97: Accelerated Irrigation Benefit Programme initiated
  • Reservoir Storage Capacity: 151.77 billion cubic metres

Agricultural Pricing

  • To ensure
    • Remunerative prices to growers
    • Encouraging higher investment and production
    • Safeguard the interest of consumers by making sure that adequate supplies are available
  • It also seeks to evolve a balanced and integrated price structure in the perspective of the overall needs of the economy

 

Investment in Agriculture

  • FAO estimates that global agricultural production needs to grow 70 pc by 2050 in order to meet projected food demand
  • Hence investment should grow by a whopping 50 pc
  • In India, public investment in agriculture has witnessed a steady decline from the 6th FYP onwards
  • Share of investment in agriculture has been between 8-10 pc
  • Most of this has gone into current expenditure in the form of increased output and input subsidies
  • Though private sector investment has been increasing, it has not proved to be enough
  • Decreased public spending in creation of supporting infrastructure in rural areas has discouraged private investment in this sector
  • Some of the measures could be
    • Investment in general service like R&D, education, marketing and rural infrastructure
    • Increased investment in rainfed areas
    • Private sector participation
    • Increased investment for sustainable development

 

WTO and Agriculture

 

  • Uruguay Round multilateral trade negotiations were concluded after 7 years of negotiation in December 1993
  • The WTO Agreement on Agriculture was one of the main agreements which was negotiated
  • Agreement on Agriculture contains provisions in three broad areas of agriculture
    • Market Access
    • Domestic Support
    • Export Subsidies
  • Market Access
    • This is the most important aspect of the negotiation because all countries restrict market access while only few have export subsidies and domestic support
    • This includes tariffication, tariff reduction and access opportunities
    • Tariffication means that all NTTBs should be withdrawn (such as quotas, minimum export prices etc)
    • Adopts a single approach using a tiered formula
    • Single approach: everyone except LDCs have to contribute by improving market access for all products
    • Sensitive products: All countries can list some sensitive products and are allowed flexibility in the way these products are treated, although even sensitive products have to see ‘substantial improvements’ in market access.
    • Special and differential treatment
      • Purpose: for rural development, food security and livelihood security
      • Specifically, special treatment is to be given to developing countries in ‘all elements of the negotiation’, including ‘lesser’ commitments in the formula and long implementation period
      • Special products: developing countries will be given additional flexibility for products that are specially important for their food security, livelihood security and rural development.
      • Special Safeguard Mechanisms: is intended to provide contingent protection to poor farmers in developing countries from negative shocks to import prices or from surges in imports. [Safeguards are contingency restrictions on imports taken temporarily to deal with special circumstances such as a sudden surge in imports. AoA has special provisions on safeguards. In agriculture safeguards, (unlike normal safeguards) can be triggered automatically when import volumes rise above a certain level or if prices fall below a certain level; and it is not necessary to demonstrate that serious injury is being caused to the domestic industry]
    • AoA requires (from 1995)
      • 36% average reduction by developed countries, with a minimum per tariff line reduction of 15% over six years
      • 24% average reduction by developing countries with a minimum per tariff line reduction of 10% over ten years
    • Domestic Support (subsidies)
      • AoA structures domestic support into three categories
        • Green Box
        • Amber Box
        • Blue Box
      • Green Box
        • Non (or minimal) trade distorting subsidies
        • They have to be government funded and must not involve price support
        • They tend to be programmes that are not targeted at particular products and include direct income supports for farmers that are not related to current production levels or prices. They also include environmental protection and regional developmental programmes. These subsidies are therefore allowed without limits
      • Amber Box
        • All domestic support measures considered production and trade fall into the amber box
        • These include measures to support prices, or subsidies directly related to production quantities
        • These supports are subject to limits which are allowed: 5% of total production for developed countries, 10% for developing countries
        • Reduction commitments are expressed in terms of a “Total Aggregate Measurement of Support” (Total AMS)
      • Blue Box
        • This is the “amber box with conditions” – conditions designed to reduce distortion
        • Any support that would normally be in the amber box, is placed in the blue box if the support also required farmers to limit production
        • At present there are no limits on spending on blue box subsidies.
      • Export subsidies
        • Developed countries are required to reduce their export subsidy by 36% (by value) or 21% (by volume) over the six years
        • For developing countries the % cuts are 24% (by value) or 14% (by volume) over 10 years
      • India’s commitment
        • As India was maintaining QRs due to balance of payments reasons (which is a GATT consistent measure), it did not have to undertake any commitments in regard to market access
      • In India, exporters of agricultural commodities do not get any direct subsidy. Indirect subsidies are given

 

 

Food Processing

  • Food processing is a large sector that covers activities such as agriculture, horticulture, plantation, animal husbandry and fisheries
  • Ministry of Food Processing indicated the following segments within the Food Processing industry:
    • Dairy, fruits and vegetable processing
    • Grain processing
    • Meat and poultry processing
    • Fisheries
    • Consumer foods including packaged foods, beverages and packaged drinking water
  • Industry is large and has grown after 1991. However, of the country’s total agriculture and food produce, only 2 per cent is processed.
  • FP has 9% share in manufacturing
  • Structure
    • 42 pc: Unorganised
    • 33 pc: SSI
    • 25 pc: Organised

 

Constraints & Drivers of Growth
Changing lifestyles, food habits, organized food retail and urbanization are the key factors for processed foods in India, these are post-liberalization trends and they give boost to the sector.
There has been a notable change in consumption pattern in India. Unlike earlier, now the share and growth rates for fruits, vegetables, meats and dairy have gone higher compared to cereals and pulses. Such a shift implies a need to diversify the food production base to match the changing consumption preferences.
Also in developed countries it has been observed that there has been a shift from carbohydrate staple to animal sources and sugar. Going by this pattern, in future, there will be demand for prepared meals, snack foods and convenience foods and further on the demand would shift towards functional, organic and diet foods.
Some of the key constraints identified by the food processing industry include:

  • Poor infrastructure in terms of cold storage, warehousing, etc
  • Inadequate quality control and testing infrastructure
  • Inefficient supply chain and involvement of middlemen
  • High transportation and inventory carrying cost
  • Affordability, cultural and regional preference of fresh food
  • High taxation
  • High packaging cost

In terms of policy support, the ministry of food processing has taken the following initiatives:

  • Formulation of the National Food Processing Policy
  • Complete de-licensing, excluding for alcoholic beverages
  • Declared as priority sector for lending in 1999
  • 100% FDI on automatic route
  • Excise duty waived on fruits and vegetables processing from 2000 – 01
  • Income tax holiday for fruits and vegetables processing from 2004 – 05
  • Customs duty reduced on freezer van from 20% to 10% from 2005 – 06
  • Implementation of Fruit Products Order
  • Implementation of Meat Food Products Order
  • Enactment of FSS Bill 2005
  • Food Safety and Standards Bill, 2005
  • Mega Food Parks

Apart from these initiatives, the Centre has requested state Governments to undertake the following reforms:

  • Amendment to the APMC Act
  • Lowering of VAT rates
  • Declaring the industry as seasonal
  • Integrate the promotional structure

 

Plan Schemes

During the 10th Plan, the Ministry implemented Plan schemes for Technology Upgradation/Modernization/Establishment of Food Processing Industries, Infrastructure Development, Human Resource Development, Quality Assurance, R&D and other promotional activities.

In the 11th Plan, it has been proposed to continue assistance to the above schemes with higher levels of assistance. In the 11th Plan, the Ministry proposes to launch a revamped Infrastructure Scheme under which it will promote setting up of Mega Food Parks, cold chain infrastructure, value added centres and packaging centres. The Mega Food Park Scheme will provide backward and forward linkages as well as reliable and sustainable supply chain. The emphasis will be on building strong linkages with agriculture and horticulture, enhancing project implementation capabilities, increased involvement of private sector investments and support for creation of rural infrastructure to ensure a steady supply of good quality agri/horticulture produce. It will provide a mechanism to bring farmers, processors and retailers together and link agricultural production to the market so as to ensure maximization of value addition, minimize wastages and improve farmers’ income. The Mega Food Park would be a well-defined agri/horticultural-processing zone containing state of the art processing facilities with support infrastructure and well established supply chain. The primary objective of the proposed scheme is to facilitate establishment of integrated value chain, with processing at the core and supported by requisite forward and backward linkages. It is envisaged that the implementation of the projects would be assisted by professional Project Management Agencies (PMA) from concept to commissioning. In 11th Plan it is planned to support establishment of thirty (30) Mega Food Parks in various parts of the country.

Vision 2015 on Food Processing Industries

A vision, strategy and action plan has also been finalized for giving boost to growth of food processing sector. The objective is to increase level of processing of perishable food from 6% to 20%, value addition from 20% to 35% and share in global food trade from 1.6% to 3%. The level of processing for fruits and vegetables is envisaged to increase from the present 2.2% to 10% and 15% in 2010 and 2015 respectively. The Cabinet has approved the integrated strategy for promotion of agri-business and vision, strategy and action plan for the Food Processing Sector, based on the recommendations made by the Group of Ministers (GOM).

Integrated Food Law

An Integrated Food Law, i.e. Food Safety and Standards Act, 2006 was notified on 24.8.2006. The Act enables in removing multiplicity of food laws and regulatory agencies and provide single window to food processing sector. Ministry of Health & Family Welfare has been designated as the nodal Ministry for administration and implementation of the Act.

National Institute of Food Technology Entrepreneurship & Management (NIFTEM)

The Ministry has set up a National Institute of Food technology Entrepreneurship & Management (NIFTEM) at Kundli (Haryana). The Institute will function as a knowledge centre in food processing. Certificate of Incorporation of NIFTEM as a section 25 Company under the Companies act 1956 has been obtained.

 

SWOT Analysis of Food–Processing Industry
Strengths

  • Abundant availability of raw material
  • Priority sector status for agro-processing given by the central Government
  • Vast network of manufacturing facilities all over the country
  • Vast domestic market

Weaknesses

  • Low availability of adequate infrastructural facilities
  • Lack of adequate quality control and testing methods as per international standards
  • Inefficient supply chain due to a large number of intermediaries
  • High requirement of working capital.
  • Inadequately developed linkages between R&D labs and industry.
  • Seasonality of raw material

Opportunities

  • Large crop and material base offering a vast potential for agro processing activities
  • Setting of SEZ/AEZ and food parks for providing added incentive to develop greenfield projects
  • Rising income levels and changing consumption patterns
  • Favourable demographic profile and changing lifestyles
  • Integration of development in contemporary technologies such as electronics, material science, bio-technology etc. offer vast scope for rapid improvement and progress
  • Opening of global markets

Threats

  • Affordability and cultural preferences of fresh food
  • High inventory carrying cost
  • High taxation
  • High packaging cost

 

Subsidies

 

Fertilizer Policy:    Urea is the only fertilizer under statutory price control.  Government of India has introduced nutrient based subsidy with effect from 1st April, 2010 in respect of phosphatic and potassic  fertilizers. Under the policy, subsidy is based  on the nutrient (N,P,K and S) content of the  decontrolled P and K fertilizers. Price of Urea has been increased by 10% while price of other subsidized fertilizers are being maintained around current levels. Additional subsidy on micronutrients has been introduced on Boron and Zinc, to begin with.  In order to promote the concept of balanced use of fertilizers and to encourage use of micronutrients, several fertilizers fortifed with Boron and Zinc have been incorporated in the Fertilizer (Control) Order, 1985.

 

 

 

Green Revolution in India

in India

  • A term coined to describe the emergence and diffusion of new seeds of Cereals.
  • Norman-e-Borlaug is the Father of Green Revolution in the world, while Dr. M.S. Swami Nathan is known as the Father of Green Revolution in India.
  • The new cereals were the product of research work and concentrated plant breeding with the objective of creating High Yielding Varieties (HYVs) of use to the developing countries.
  • New varieties of wheat were first bred in Mexico in the 1950s and that of rice, like IR-8 (miracle rice) at the International Rice Research Institute, Manila, (Philippines in the 1960s).
  • The increase in the yield from the new seeds has been spectacular as during the last forty years, agricultural production, particularly of wheat and rice, has experienced a great spurt and this has been designated as the Green Revolution.
  • The Green Revolution has been used to mean two different things. Some experts of Agriculture-notes-for-state-psc-exams”>Agriculture use it for referring to a broad transformation of agricultural sector in the developing countries to reduce food shortages.
  • Others use it when referring to the specific plant improvements, notably the development of HYVs.
  • Whatsoever the meaning of Green Revolution may be taken as, the adoption and diffusion of new seeds of wheat and rice has been considered as a significant achievement as it offered great optimism.
  • In fact, these varieties of seeds have revolutionised the agricultural landscape of the developing countries and the problem of food shortage has been reduced.
  • In India, hybridisation of selected crops, i.e. maize, bajra (bulrush Millets), and millets began in 1960.
  • The Mexican dwarf varieties of wheat were tried out on a selected scale in 1963-64. Exotic varieties of rice such as Taichung Native I were introduced in India in 1964.
  • The diffusion of HYVs, however, became fully operational in the country in the Kharif season of 1965-66.
  • The diffusion of the new seeds was mainly in the Satluj-Ganga Plains and the Kaveri Delta.
  • Subsequently, a number of varieties of wheat and rice were developed by the Indian scientists and adopted by the Indian farmers.

 

Merits of the High Yielding Varieties

The High Yielding Varieties have certain advantages over the traditional varieties of cereals which are given as under:

 

  1. Shorter Life Cycle
  2. Economize on Irrigation Water
  3. Generate more EMPLOYMENT

Geographical Constraints in the Adoption of New Seeds

The new seeds are less resistant to droughts and floods and need an efficient management of water, chemical fertilisers, insecticides and pesticides.

The conditions required for the good harvest of new seeds have been described below:

 

  1. Irrigation
  2. Availability of Chemical Fertilisers
  3. Plant Protection Chemicals
    • The new seeds are very delicate and highly susceptible to pests and diseases.
    • The danger of pests and insects may be reduced by using plant protection chemicals.

 

  • The problems of crop disease and pests may also be tackled by timely application of insecticides and pesticides

 

  1. Capital Constraint
  1. Mechanization
  1. Marketing and Storage Facilities
  1. Extension Service
  1. Human Factor

Environmental and Ecological Implications of Green Revolution

Some of the environmental and ecological problems that emerged out of the cultivation of the High Yielding Varieties are depletion of forests, reduction in pastures, salination, water-logging, depletion of underground water-table, Soil erosion, change in the soil chemistry, reduction in bio-diversity, decline in Soil fertility, silting of rivers, increase in Weeds, emergence of numerous new plant diseases, and Health hazards.

 

An overview of these environmental and ecological problems has been given here.

  1. Salination

 The saline and alkaline affected tracts, locally known as kallar or thur in Punjab and kallar or reh in Uttar Pradesh have expanded and increased in area.The problem of salinity and alkalinity can be solved by use of manure (cow dung, compost, and green manure) and by a judicious selection of leguminous crops in the rotation

 

  1. Waterlogging

Water Logging is the other major problem associated with over-irrigation.The progressive and ambitious cultivators of the irrigated areas of these districts have changed their Cropping patterns and have introduced rice and wheat in place of bajra, pulses, Cotton, and fodder.Repeated irrigation of these crops in the summer and winter seasons have resulted into waterlogged condition, especially along the canals.

 

  1. Soil erosion
  2. Pollution:
  3. Lowering of the Underground Water-Table:
  4. Deforestation
  5. Noise Pollution:
  6. Health Hazards:

 

Green Revolution—Achievements, Problems and Prospects

Green Revolution—Achievements

The main achievements of Green Revolution may be summarized as under:

 

  1. The production and productivity of wheat, rice, maize, and bajra has increased substantially.
  2. India has become almost self-sufficient in the matter of staple foods.
  3. The double cropped area has increased; thereby intensification of the Indian Agriculture has increased.
  4. In the areas where Green Revolution is a success, the farmers have moved from subsistent to market oriented economy, especially in Punjab, Haryana, western Uttar Pradesh, and the plain districts of Uttarakhand (Hardwar and Udhamsinghnagar).
  5. The adoption of High Yielding Varieties under the Green Revolution has generated more rural and urban employment.
  6. Green Revolution has increased the income of farmers and landless labourers, especially that of the big farmers and the semi-skilled rural workers. Thus Green Revolution has increased rural prosperity.
  7. Green Revolution has created jobs in the areas of biological (seed fertilisers) innovations, and repair of agricultural equipments and machinery.

 

Green Revolution—Problems and Prospects

  1. Depletion of soil owing to the continuous cultivation of soil exhaustive crops like rice and wheat.
  2. Depletion of underground water table due to over-irrigation of more moisture requiring crops like rice and wheat.
  3. Green Revolution has increased the income disparity amongst the farmers.
  4. Green Revolution led to polarization of the rural Society. It has created three types of conflicts in the rural community, namely, between large and small farmers, between owner and tenant farmers, between the employers and employees on agricultural farms.
  5. Green Revolution has displaced the agricultural labourers, leading to rural Unemployment. The mechanical innovations like tractors have displaced the agricultural labour. 6. Agricultural production in the Green Revolution areas is either stationary or has shown declining trend.
  6. Some valuable agricultural lands have submerged under water (water-logging) or are adversely affected by salinity and alkalinity.
  7. Green Revolution is crop specific. It could not perform well in the case pulses and oil-seeds.
  8. The traditional institution of Jijmani system has broken. Consequently, the barbers, carpenters, iron-smith, and watermen have migrated to the urban areas.
  9. The Soil Texture, structure, soil chemistry, and soil fertility have changed.
  10. About 60 per cent of agricultural land in the country remains unaffected by Green Revolution.
  11. Green Revolution technologies are scale neutral but not resource neutral.
  12. Punjab feeds the nation but farmers in the state, especially in the Malwa region fall prey to cancer. The take ‘Cancer Train’ to Bikaner for cheap treatment.

 

agriculture

the syllabus states that -mazor crops,cropping patterns in various parts of the country,different types of irrigation system,storage,transport and marketing of agricultural product,and issues related to constraints,e-tec hnology in the aid of farmers….
the link for yojna January  2011 for agriculture is for dowloading dere would be a link as  
download pdf

also ncert geography land use and agriculture is
https://docs.google.com/file/d/0B_FR6Jkv0z2ceE8wX05oUUN1b0k/edit?usp=sharing

for e-tec hnology in the aid of farmers.there is great krukshetra its link is


 krukshetra agriculture productivity dec 2011 link 
 krukshetra  climate change and suistainable agriculture march 2011 link
 krukshetra soil rejuvenation  nov 2011 link
and most imp krukshetra june 2013…sorry no pdf copy yet released…
and
yojna budget march 2011
yojna celebration 60 years jan 2010 
yojna north eas dec 2011

Institutional Factors of Agriculture (1) Land Tenure and Land Tenancy (ii) Land Holding

Institutional Factors of Agriculture-notes-for-state-psc-exams”>Agriculture

(1) Land Tenure and Land Tenancy

(ii) Land Holding

https://exam.pscnotes.com/land-reforms-in-india”>Land reforms in India

The basic objective of land reform is to do social Justice with the tillers, land owners, landless labourers, and rural community with the set objective to provide security to the cultivators, to fix a rational rent, the conferment of title to the tiller and to increase the agricultural productivity.The entire concept of land reforms aims at the abolition of intermediaries and bringing the actual cultivator in direct contact with the state.

The scheme of land reforms includes:

  • abolition of intermediaries,and
  • Tenancy Reforms, i.e. regulation of rent, security of tenure for tenants, and confirmation of ownership on them
  • ceiling on land holdings and distribution of surplus land to landless labourers and small farmers,
  • agrarian reorganization including consolidation of holdings and prevention of subdivision and fragmentation,
  • organisation of co-operative farms, and
  • improvement in the system of land record keeping.

Abolition of Intermediaries

Mahalwari System

Ryotwari System

Tenancy Reforms

Rent Control

Ceiling of Landholdings

Consolidation of Holdings

  • Consolidation of holdings means to bring together in compact block, all the fields of land of a farmer which are well scattered in different parts of the village.
  • Under the scheme, all land in the village is first pooled into one compact block and it is divided into smaller blocks called chaks, and allotted to individual farmer.
  • This is a useful scheme which helped in overcoming the problem of fragmentation of holdings.
  • But unfortunately, the scheme has not been implemented in all the states of the country.
  • There are many hurdles in the implementation of consolidation of holdings in some of the states.

Computerized Land Records

  • The centrally sponsored scheme on computerization of land records was started in 1988-89.
  • At present, the scheme has been implemented in 582 districts out of the 640 districts of the country, leaving those districts where there are no proper land records.

 

 Climatic changes

 

 

  • It is the long term change in the statistical distribution of weather patterns over periods of time
  • Though it has been happening naturally for millions of years, in recent years it has accelerated due to anthropogenic causes and has been causing https://exam.pscnotes.com/global-warming”>Global Warming.
  • UNFCCC defines Climate-change”>Climate Change as – “a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global Atmosphere and which is in addition to natural climate variability observed over comparable time periods”