Evolution and characteristics of landforms in the Fluvial, Glacial, Arid and Karst regions  

 

Landform

Each landform has its unique physical shape, size, materials and is a result of the action of certain geomorphic processes and agent(s). Every landform has a beginning. Landforms once formed may change in their shape, size and nature slowly or fast due to continued action of geomorphic processes and agents. Due to changes in climatic conditions and vertical or horizontal movements of landmasses, either the intensity of processes or the processes themselves might change leading to new modifications in the landforms.

Evolution

It implies stages of transformation of either a part of the earth’s surface from one landform into another or transformation of individual landforms after they are once formed. That means, each and every landform has a HISTORY of development and changes through time. A landmass passes through stages of development somewhat comparable to the stages of life — youth, mature and old age.

Geomorphic Agents

Changes on the surface of the earth owe mostly to erosion by various geomorphic agents. Running water, ground-water, Glaciers, wind and waves are powerful    erosional and depositional agents shaping and changing the surface of the earth aided by weathering and mass wasting processes. These geomorphic agents acting over long periods of time produce systematic changes leading to sequential development of landforms.

Fluvial landforms

The landforms created as a result of degradational action (erosion) or aggradation work (deposition) of running water is called fluvial landforms.

These landforms result from the action of surface flow/run-off or stream flow (water flowing through a channel under the influence of gravity). The creative work of fluvial processes may be divided into three physical phases—erosion, transportation and deposition.

The landforms created by a stream can be studied under erosional and depositional categories.

Erosional category

Valleys, gorge and Canyon

The extended depression on ground through which a stream flows throughout its course is called a river valley. gorge is a deep valley with very steep to straight sides. A canyon is characterized by steep step-like side slopes and may be as deep as a gorge.

At a young stage, The profile of valley  is typically ‘V’ shaped. As the cycle attains maturity, the lateral erosion becomes prominent and the valley floor flattens out. The valley profile now becomes typically ‘U’ shaped with a broad base and a concave slope.

Potholes, Plunge pools

Potholes are more or less circular depressions over the rocky beds of hills streams.Once a small and shallow depression forms, pebbles and boulders get collected in those depressions and get rotated by flowing water. Consequently, the depressions grow in dimensions to form potholes.Plunge pools are nothing but large, deep potholes commonly found at the foot of a waterfall. They are formed because of the sheer impact of water and rotation of boulders.

Incised or Entrenched Meanders

They are very deep wide meanders (loop-like channels) found cut in hard rocks.In the course of time, they deepen and widen to form gorges or canyons in hard rock.The difference between a normal meander and an incised/entrenched meander is that the latter found on hard rocks.

River Terraces

They are surfaces marking old valley floor or flood plains.They are basically the result of vertical erosion by the stream. When the terraces are of the same elevation on either side of the river, they are called as paired terraces.When the terraces are seen only on one side with none on the other or one at quite a different elevation on the other side, they are called as unpaired terraces.

Depositional Features

Alluvial Fans

They are found in the middle course of a river at the foot of slope/ Mountains.When the stream moves from the higher level break into foot slope plain of low gradient, it loses its energy needed to transport much of its load.Thus, they get dumped and spread as a broad low to the high cone-shaped deposits called an alluvial fan.

Deltas

They are found in the mouth of the river, which is the final location of depositional activity of a river. \The coarser material settle out first and the finer materials like silt and clay are carried out into the sea.

 

 Flood Plains, Natural Levees

Natural levees are found along the banks of large rivers. They are low, linear and parallel ridges of coarse deposits along the banks of a river.The levee deposits are coarser than the deposits spread by flood water away from the river.

 

 Meanders and oxbow lakes

  • They are formed basically because of three reasons: (i) propensity of water flowing over very gentle gradient to work laterally on the banks; (ii) unconsolidated nature of alluvial deposits making up the bank with many irregularities; (iii) Coriolis force acting on fluid water deflecting it like deflecting the wind.
  • The concave bank of a meander is known as cut-off bank and the convex bank is known as a slip-off
  • As meanders grow into deep loops, the same may get cut-off due to erosion at the inflection point and are left as oxbow lakes.

Braided Channels

When selective deposition of coarser materials causes the formation of a central bar, it diverts the flow of river towards the banks, which increases lateral erosion. Similarly, when more and more such central bars are formed, braided channels are formed. Riverine Islands are the result of braided channels.

 

Karst Topography

Any limestone, dolomite or gypsum region showing typical landforms produced by the action of groundwater through the process of solution and deposition is called as Karst Topography (Karst region in the Balkans).

https://exam.pscnotes.com/sinkholes”>Sinkholes

A sinkhole is an opening more or less circular at the top and funnel-shaped towards the bottom.When as sinkhole is formed solely through the process of solution, it is called as a solution sink.When several sink holes join together to form valley of sinks, they are called as blind valleys.

 

Caves

In the areas where there are alternative beds of rocks (non-soluble) with limestone or dolomite in between or in areas where limestone are dense, massive and occurring as thick beds, cave formation is prominent. Caves normally have an opening through which cave streams are discharged Caves having an opening at both the ends are called tunnels.

Stalactites and stalagmites

They are formed when the calcium carbonates dissolved in groundwater get deposited once the water evaporates.These structures are commonly found in limestone caves.Stalactites are calcium carbonate deposits hanging as icicles while Stalagmites are calcium carbonate deposits which rise up from the floor.When a stalactite and stalagmite happened to join together, it gives rise to pillars or columns of different diameters.

GLACIERS

Masses of ice moving as sheets over the land (continental glacier or piedmont glacier if a vast sheet of ice is spread over the plains at the foot of mountains) or as linear flows down the slopes of mountains in broad trough-like valleys (mountain and valley glaciers) are called glaciers.

Erosional Landforms

Cirque

Cirques are the most common of landforms in glaciated mountains. They are deep, long and wide troughs or basins with very steep concave to vertically dropping high walls at its head as well as sides. A lake of water can be seen quite often within the cirques after the glacier disappears. Such lakes are called cirque or tarn lakes.

Horns and Serrated Ridges

Horns form through head ward erosion of the cirque walls. If three or more radiating glaciers cut headward until their cirques meet, high, sharp pointed and steep sided peaks called horns form.

 

Glacial Valleys/Troughs

Glaciated valleys are trough-like and U-shaped with broad floors and relatively smooth, and steep sides. There may be lakes gouged out of rocky floor or formed by debris within the valleys. There can be hanging valleys at an elevation on one or both sides of the main glacial valley. Very deep glacial troughs filled with sea water and making up shorelines (in high latitudes) are called fjords/fiords.

 

Depositional landforms

 

Moraines

They are long ridges of deposits of glacial till. Terminal moraines are long ridges of debris deposited at the end (toe) of the glaciers. Lateral moraines form along the sides parallel to the glacial valleys. The lateral moraines may join a terminal moraine forming a horse-shoe shaped ridge. deposits varying greatly in thickness and in surface topography are called ground moraines.

 

Eskers

When glaciers melt in summer, the water flows on the surface of the ice or seeps down along the margins or even moves through holes in the ice. These waters accumulate beneath the glacier and flow like streams in a channel beneath the ice. Such streams flow over the ground (not in a valley cut in the ground) with ice forming its banks. Very coarse materials like boulders and blocks along with some minor FRACTIONS of rock debris carried into this stream settle in the valley of ice beneath the glacier and after the ice melts can be found as a sinuous ridge called esker.

Outwash Plains

The plains at the foot of the glacial mountains or beyond the limits of continental ice sheets are covered with glacio-fluvial deposits in the form of broad flat alluvial fans which may join to form outwash plains of gravel, silt, sand and clay.

Drumlins

Drumlins are smooth oval shaped ridge-like features composed mainly of glacial till with some masses of gravel and sand. The long axes of drumlins are parallel to the direction of ice movement. They may measure up to 1 km in length and 30 m or so in height.

 

Arid Landforms

Wind is one of the  dominant agents in hot deserts. The wind action creates a number of interesting erosional and depositional features in the deserts.

 

EROSIONAL LANDFORMS

Pediments and Pediplains

. Gently inclined rocky floors close to the mountains at their foot with or without a thin cover of debris, are called pediments. through parallel retreat of slopes, the pediments extend backwards at the expense of mountain front, and gradually, the mountain gets reduced leaving an inselberg which is a remnant of the mountain. That’s how the high relief in desert areas is reduced to low featureless plains called pediplains.

Playas

Plains are by far the most prominent landforms in the deserts. In times of sufficient water, this plain is covered up by a shallow water body. Such types of shallow lakes are called as playas where water is retained only for short duration due to Evaporation and quite often the playas contain good deposition of salts.

. Deflation Hollows and Caves

Weathered mantle from over the rocks or bare Soil, gets blown out by persistent movement of wind currents in one direction. This process may create shallow depressions called deflation hollows. Deflation also creates numerous small pits or cavities over rock surfaces. The rock faces suffer impact and abrasion of wind-borne sand and first shallow depressions called blow outs are created, and some of the blow outs become deeper and wider fit to be called caves.

Mushroom, Table and Pedestal Rocks

Many rock-outcrops in the deserts easily susceptible to wind deflation and abrasion are worn out quickly leaving some remnants of resistant rocks polished beautifully in the shape of mushroom with a slender stalk and a broad and rounded pear shaped cap above. Sometimes, the top surface is broad like a table top and quite often, the remnants stand out like pedestals.

Depositional Landforms

When the wind slows or begins to die down, depending upon sizes of grains and their critical velocities, the grains will begin to settle.

Sand Dunes

Dry hot deserts are good places for sand dune formation. Obstacles to initiate dune formation are equally important. There can be a great variety of dune forms Crescent shaped dunes called barchans with the points or wings directed away from wind .Parabolic dunes form when sandy surfaces are partially covered with vegetation. That means parabolic dunes are reversed barchans with wind direction being the same.

Seif is similar to barchan with a small difference. Seif has only one wing or point. Longitudinal dunes form when supply of sand is poor and wind direction is constant. They appear as long ridges of considerable length but low in height. Transverse dunes are aligned perpendicular to wind direction. These dunes form when the wind direction is constant and the source of sand is an elongated feature at right angles to the wind direction.

 

Major types of rocks and their characteristics

 

 

They are aggregates or physical mixture of one or more Minerals. Minerals on the other hand are made up of two or more Elements in a definite ratio. They have a definite chemical composition. Crust is made up of more than 2000 minerals, but out of these, 6 are the most abundant and contribute the maximum to this uppermost part of the earth. These are feldspar, quartz, pyroxenes, amphiboles, mica and olivine.
Rocks are of immense economic importance to us.
Rocks differ in their properties, size of particles and mode of formation. On the basis of mode of formation rocks may be grouped into three types:
(a) Igneous
(b) Sedimentary and
(c) Metamorphic

Igneous  Rocks

https://exam.pscnotes.com/igneous-rocks”>Igneous Rocks are formed by crystallization from a liquid, or magma. They include two types
Volcanic or extrusive igneous rocks form when the magma cools and crystallizes on the surface of the Earth
Intrusive or plutonic igneous rocks wherein the magma crystallizes at depth in the Earth.

Magma is a mixture of liquid rock, crystals, and gas. Characterized by a wide range of chemical compositions, with high temperature, and properties of a liquid.
On the basis of their mode of occurrence, igneous rocks can be classified as : extrusive or volcanic rocks and intrusive rocks.
(i) Extrusive igneous rocks are formed by cooling of lava on the earth’s surface. As lava cools very rapidly on coming out of the hot Interior Of The Earth, the mineral crystals forming these rocks are very fine. These rocks are also called volcanic rocks. Gabbro and basalt are very common examples of such rocks. These rocks are found in volcanic areas. Deccan plateau’s regur Soil in India is derived from lava.

(ii) Intrusive igneous rocks are formed when magma solidifies below the earth’s surface. The rate of cooling below the earth’ s surface is very slow which gives rise to formation of large crystals in the rocks. Deep seated intrusive rocks are termed as plutonic rocks and shallow depth intrusive rocks are termed as hypabyssal. Granite and dolerite are common examples of intru- sive rocks. From this point of view, therefore, igneous rocks can, in accor- dance with their mode of formation, be classified as (a) Plutonic, (b) Hyp- abyssal and (c) Volcanic rockmasses. The huge blocks of coarse granitic rocks are found both in the Himalaya and the Decean Plateau.

 

Sedimentary Rocks

Sedimentary Rocks are formed by successive deposition of sediments. These sediments may be the debris eroded from any previously existing rock which may be igneous rock, metamorphic or old sedimentary rock. Sedimentary rocks have layered or stratified structure. The thickness of strata varies from few millimeters to several metres. So these rocks are also called stratified rocks. Generally, these rocks have some type of fossil between their strata. Fossil is the solid part or an impression of a prehistoric animal or plant embedded in strata of sedimentary rocks. Sedimentary rocks are widely spread on the earth surface but to a shallow depth.

The formation of sedimentary rocks involves five processes:

  1. Weathering – The first step is transforming solid rock into smaller fragments or dissolved ions by physical and Chemical Weathering as discussed in the last lecture.
    2. Erosion – Erosion is actually many process which act together to lower the surface of the earth. In terms of producing sediment, erosion begins the Transpiration process by moving the weathered products from their original location. This can take place by gravity (mass wasting events like landslides or rock falls), by running water. by wind, or by moving ice. Erosion overlaps with transpiration.
    3. Transportation – Sediment can be transported by sliding down slopes, being picked up by the wind, or by being carried by running water in streams, rivers, or ocean currents. The distance the sediment is transported and the energy of the transporting medium all leave clues in the final sediment that tell us something about the mode of transportation.
    4. Deposition – Sediment is deposited when the energy of the transporting medium becomes too low to continue the transport process. In other words, if the velocity of the transporting medium becomes too low to transport sediment, the sediment will fall out and become deposited. The final sediment thus reflects the energy of the transporting medium.
    5. Lithification (Diagenesis) – Lithification is the process that turns sediment into rock. The first stage of the process is compaction. Compaction occurs as the weight of the overlying material increases. Compaction forces the grains closer together, reducing pore space and eliminating some of the contained water. Some of this water may carry mineral components in solution, and these constituents may later precipitate as new minerals in the pore spaces. This causes cementation, which will then start to bind the individual .

Metamorphic Rocks

Metamorphic rocks are formed under the influence of heat or pressure on sedimentary or igneous rocks. Tremendous pressure and high temperature change the colour, hard- ness, structure and composition of all types of pre-existing rocks. The process which bring about the change is known as Metamorphism and the ultimate products, formed due to operation of such processes are defined as the Metamrphic rocks.
Metamorphism refers to the changes in mineral assemblage and texture that result from subjecting a rock to pressures and temperatures different from those under which the rock originally formed.
The original rock that has undergone metamorphism is called the protolith. Protolith can be any type of rock .

Metamorphism occurs because rocks undergo changes in temperature and pressure and may be subjected to differential Stress and hydrothermal fluids. Metamorphism occurs because some minerals are stable only under certain conditions of pressure and temperature. When pressure and temperature change, chemical reactions occur to cause the minerals in the rock to change to an assemblage that is stable at the new pressure and temperature conditions. But, the process is complicated by such things as how the pressure is applied, the time over which the rock is subjected to the higher pressure and temperature, and whether or not there is a fluid phase present during metamorphism. Different types of metamorphic rocks are found all over the world. In India, marble is found in Rajasthan, Bihar and Madhya Pradesh, whereas slates are available in plenty in Orissa, Andhra Pradesh and Haryana. In Kangra and Kumaun regions ]of Himalaya, slates of different colours are found.

Tsunamis

 

 

 

A tsunami is a very long-wavelength wave of water that is generated by sudden displacement of the seafloor or disruption of any body of standing water. Tsunami are sometimes called “seismic sea waves“, although they can be generated by mechanisms other than Earthquakes.
Tsunami have also been called “tidal waves”, but this term should not be used because they are not in any way related to the tides of the Earth. Because tsunami occur suddenly, often without warning, they are extremely dangerous to coastal communities.

Tsunamis can be associated with earthquakes. Sometimes a large earthquake beneath the ocean floor will produce a tsunami, which is a series of large waves.

The rate at which a wave loses its energy is inversely related to its wavelength. Since a tsunami has a very large wavelength, it will lose little energy as it propagates. Thus, in very deep water, a tsunami will travel at high speeds with little loss of energy.

As a tsunami leaves the deep water of the open sea and arrives at the shallow waters near the coast, it undergoes a transformation. Since the velocity of the tsunami is also related to the water depth, as the depth of the water decreases, the velocity of the tsunami decreases. The change of total energy of the tsunami, however, remains constant.

Furthermore, the period of the wave remains the same, and thus more water is forced between the wave crests causing the height of the wave to increase. Because of this “shoaling” effect, a tsunami that was imperceptible in deep water may grow to have wave heights of several meters or more.

The main damage from tsunami comes from the destructive nature of the waves themselves. Secondary effects include the debris acting as projectiles which then run into other objects, erosion that can undermine the foundations of structures built along coastlines, and fires that result from disruption of gas and electrical lines. Tertiary effects include loss of crops and water and electrical systems which can lead to famine and disease.

 

 

 

Earthquakes

 

Earthquakes occur when energy stored in elastically strained rocks is suddenly released. This release of energy causes intense ground shaking in the area near the source of the earthquake and sends waves of elastic energy, called seismic waves, throughout the Earth. Earthquakes can be generated by bomb blasts, volcanic eruptions, sudden volume changes in Minerals, and sudden slippage along faults. Earthquakes are definitely a geologic hazard for those living in earthquake prone areas, but the seismic waves generated by earthquakes are invaluable for studying the Interior Of The Earth.

The point within the earth where the fault rupture starts is called the focus or hypocenter. This is the exact location within the earth were seismic waves are generated by sudden release of stored elastic energy.

The epicenter is the point on the surface of the earth directly above the focus. Sometimes the media get these two terms confused.

Seismic waves are the vibrations from earthquakes that travel through the Earth; they are recorded on instruments called seismographs. Seismographs record a zig-zag trace that shows the varying amplitude of ground oscillations beneath the instrument. Sensitive seismographs, which greatly magnify these ground motions, can detect strong earthquakes from sources anywhere in the world. The time, locations, and magnitude of an earthquake can be determined from the data recorded by seismograph stations.

 

Two of the most common methods used to measure earthquakes are the Richter scale and the moment magnitude scale.

The Richter scale is used to rate the magnitude of an earthquake, that is the amount of energy released during an earthquake.
The Richter scale doesn’t measure quake damage (which is done by Mercalli Scale) which is dependent on a variety of factors including Population at the epicentre, terrain, depth, etc. An earthquake in a densely populated area which results in many deaths and considerable damage may have the same magnitude as a shock in a remote area that does nothing more than frightening the wildlife. Large-magnitude earthquakes that occur beneath the Oceans may not even be felt by humans. Richter Scale of Earthquake Energy
The magnitude of an earthquake is determined using information gathered by a seismograph.
The Richter magnitude involves measuring the amplitude (height) of the largest recorded wave at a specific distance from the seismic source. Adjustments are included for the variation in the distance between the various seismographs and the epicentre of the earthquakes.
The Richter scale is a base-10 logarithmic scale, meaning that each order of magnitude is 10 times more intensive than the last one.

 

Plate tectonics

 

The uppermost outer solid and rigid layer of the earth is called crust. Its thickness varies considerably. It is as little as 5 km thick beneath the Oceans at some places but under some mountain ranges it extends upto a depth of 700km. Below the crust denser rocks are found, known as mantle crust. This upper part of mantle upto an Average depth of 100 km from the surface is solid. This solid mantle plus upper crust form a comparatively rigid block termed as lithosphere. Mantle is partially molten between 100 to 250 km depth. This zone is said to be asthenosphere, also known as Mohr discontinuity, a SIMPLIFICATION of Mohorovicic, the name of the seismologist who discovered it.
The lithosphere is broken into several blocks. These blocks are known as plates, which are moving over asthenosphere. There are seven major plates.

 

While the continents do indeed appear to drift, they do so only because they are part of larger plates that float and move horizontally on the upper mantle asthenosphere. The plates behave as rigid bodies with some ability to flex, but deformation occurs mainly along the boundaries between plates.

 

 

 

The plate boundaries can be identified because they are zones along which Earthquakes occur.Plate interiors have much fewer earthquakes.

There are three https://exam.pscnotes.com/types-of-plate-boundaries”>Types of Plate Boundaries:

  1. Divergent Plate boundaries, where plates move away from each other.
  2. Convergent Plate Boundaries, where plates move toward each other.
  3. Transform Plate Boundaries, where plates slide past one another.

Divergent Plate Boundaries

These are oceanic ridges where new oceanic lithosphere is created by upwelling mantle that melts, resulting in basaltic magmas which intrude and erupt at the oceanic ridge to create new oceanic lithosphere and crust. As new oceanic lithosphere is created, it is pushed aside in opposite directions. Thus, the age of the oceanic crust becomes progressively older in both directions away from the ridge.

Because oceanic lithosphere may get subducted, the age of the ocean basins is relatively young. The oldest oceanic crust occurs farthest away from a ridge. In the Atlantic Ocean, the oldest oceanic crust occurs next to the North American and African continents and is about 160 million years old (Jurassic)

. In the Pacific Ocean, the oldest crust is also Jurassic in age, and occurs off the coast of Japan.

Because the oceanic ridges are areas of young crust, there is very little sediment accumulation on the ridges. Sediment thickness increases in both directions away of the ridge, and is thickest where the oceanic crust is the oldest. Knowing the age of the crust and the distance from the ridge, the relative velocity of the plates can be determined.

Relative plate velocities vary both for individual plates and for different plates.

Sea floor topography is controlled by the age of the oceanic lithosphere and the rate of spreading.

If the spreading rate (relative velocity) is high, magma must be rising rapidly and the lithosphere is relatively hot beneath the ridge. Thus for fast spreading centers the ridge stands at higher elevations than for slow spreading centers. The rift valley at fast spreading centers is narrower than at slow spreading centers. As oceanic lithosphere moves away from the ridge, it cools and sinks deeper into the asthenosphere. Thus, the depth to the sea floor increases with increasing age away from the ridge.

 

Convergent Plate Boundaries

When a plate of dense oceanic lithosphere moving in one direction collides with a plate moving in the opposite direction, one of the plates subducts beneath the other. Where this occurs an oceanic trench forms on the sea floor and the sinking plate becomes a subduction zone. The Wadati-Benioff Zone, a zone of earthquakes located along the subduction zone, identifies a subduction zone. The earthquakes may extend down to depths of 700 km before the subducting plate heats up and loses its ability to deform in a brittle fashion.

As the oceanic plate subducts, it begins to heat up causing the release water of water into the overlying mantle asthenosphere. The water reduces the melting temperature and results in the production of magmas. These magmas rise to the surface and create a volcanic arc parallel to the trench. If the subduction occurs beneath oceanic lithosphere, an island arc is produced at the surface (such as the Japanese islands, the Aleutian Islands, the Philippine islands, or the Caribbean islands

Transform Plate Boundaries

Where lithospheric plates slide past one another in a horizontal manner, a transform fault is created. Earthquakes along such transform faults are shallow focus earthquakes.

Most transform faults occur where oceanic ridges are offset on the sea floor. Such offset occurs because spreading takes place on the spherical surface of the Earth, and some parts of a plate must be moving at a higher relative velocity than other parts One of the largest such transform boundaries occurs along the boundary of the North American and Pacific plates and is known as the San Andreas Fault. Here the transform fault cuts through continental lithosphere

Triple Junctions occur at points where thee plates meet.

Hot Spots

Areas where rising plumes of hot mantle reach the surface, usually at locations far removed from plate boundaries are called hot spots. Because plates move relative to the underlying mantle, hot spots beneath oceanic lithosphere produce a chain of Volcanoes. A volcano is active while it is over the vicinity of the hot spot, but eventually plate motion results in the volcano moving away from the plume and the volcano becomes extinct and begins to erode.

Because the Pacific Plate is one of the faster moving plates, this type of volcanism produces linear chains of islands and seamounts, such as the

  • Hawaiian – Emperor chain, the Line
  • Islands, the Marshall-Ellice Islands,
  • and the Austral seamount chain

 

Wegner’s Continental Drift Theory

 

 

Alfred Wegner was a German Meteorologist in the early 1900s who studied ancient climates. Like most people, the jigsaw puzzle appearance of the Atlantic continental margins caught his attention. He put together the evidence of ancient glaciations and the distribution of fossil to formulate a theory that the continents have moved over the surface of the Earth, sometimes forming large supercontinents and other times forming separate continental masses. He proposed that prior to about 200 million years ago all of the continents formed one large land mass that he called Pangea .

According to Alfred Wegener, the entire landmass of the globe was together about 280 million years ago. It was termed as Pangea, a super continent. The huge water body surrounding the Pangea was known as Panthalasa. From 80 to 150 million years ago, Pangea was broken latitudinally into northern and southern parts known as Laurasia (Angaraland) and Gondwanaland, respectively. Both of them drifted away and in between a shallow sea emerged by filling up the water from Panthalasa. It was known as Tethys sea. Later on Laurasia and Gondwanaland rifted and finally drifted to form the present day distribution of land and water on the earth .

 

Wegener’s explanation of continental drift in 1912 was that drifting occurred because of the earth’s rotation. Fossil records from separate continents, particularly on the outskirts of continents show the same species.

The evidence which gave rise to the theory of continental drift includes the following:

  • The coasts of the continents surrounding the Atlantic ocean could, if the continents were moved closer, fit together like a jigsaw puzzle.
  • Living animals in widely separated lands are similar. For example India and Madagascar have similar mammals, which are quite different from those in Africa, even though it is now near to Madagascar.
  • Fossil Plants in India, South Africa, Australia, Antarctica and South America are similar to each other. This so-called Glossopteris https://exam.pscnotes.com/flora”>Flora is quite different from plants found in other parts of the world at the same time.
  • There are numerous geological similarities between eastern South America and western Africa.
  • Apparent Polar Wandering: Paleomagnetism tells us how far from the poles rocks were when they formed, by looking at the angle of their Magnetic Field. The story told by different continents is contradictory, and can only be explained if we assume the continents have moved over time.There are ridges in the floors of the main Oceans.Paleomagnetism shows that the sea floor has spread away from these ridges. Distinct patterns of stripes can be seen in the Magnetism of rocks on either side of the ridges.

Interior of earth,

 

Most of the knowledge we have about Earth’s deep interior comes from the fact that seismic waves penetrate the Earth and are recorded on the other side.  Earthquake ray paths and arrival times are more complex than illustrated in the animations, because velocity in the Earth does not simply increase with depth. Velocities generally increase downward, according to Snell’s Law, bending rays away from the vertical between layers on their downward journey; velocity generally decreases upward in layers, so that rays bend toward the vertical as they travel out of the Earth . Snell’s Law also dictates that rays bend abruptly inward at the mantle/outercore boundary (sharp velocity decrease in the liquid) and outward at the outer core/inner core boundary (sharp velocity increase).

Major Points to remember about P S and Love waves

  • P wave or primary wave. This is the fastest kind of seismic wave, and, consequently, the first to ‘arrive’ at a seismic station.
  • The P wave can move through solid rock and fluids, like water or the liquid layers of the earth.
  • P waves are also known as compressional waves.
  • S waveor secondary wave, which is the second wave you feel in an earthquake. An S wave is slower than a P wave and can only move through solid rock, not through any liquid medium.
  • Travelling only through the crust, https://exam.pscnotes.com/surface-waves”>Surface Wavesare of a lower frequency than body waves, and are easily distinguished on a seismogram as a result.

 

Earth’s Layers – Earth’s Composition

The Crust of Earth

It is the outermost and the thinnest layer of the earth’s surface, about 8 to 40 km thick. The crust varies greatly in thickness and composition – as small as 5 km thick in some places beneath the Oceans, while under some mountain ranges it extends up to 70 km in depth.

The crust is made up of two layers­ an upper lighter layer called the Sial (Silicate + Aluminium) and a lower density layer called Sima (Silicate + Magnesium).The Average density of this layer is 3 gm/cc.

The Mantle of Earth

This layer extends up to a depth of 2900 km.

Mantle is made up of 2 parts: Upper Mantle or Asthenosphere (up to about 500 km) and Lower Mantle. Asthenosphere is in a semi­molten plastic state, and it is thought that this enables the lithosphere to move about it. Within the asthenosphere, the velocity of seismic waves is considerably reduced (Called ‘Low Velocity

The line of separation between the mantle and the crust is known as Mohoviricic Discontinuity.

 

The Core of Earth

Beyond a depth of 2900 km lies the core of the earth.The outer core is 2100 km thick and is in molten form due to excessive heat out there. Inner core is 1370 km thick and is in plasticform due to the combined factors of excessive heat and pressure. It is made up of iron and nickel (Nife) and is responsible for earth’s Magnetism. This layer has the maximum specific gravity.The temperatures in the earth’s core lie between 2200°c and 2750°c. The line of separation between the mantle and the core is called Gutenberg­Wiechert Discontinuity.

 

 

 

 

Origin and evolution of earth

 

 

Beginning of the Universe started about 13.6 billion years ago,when the Big Bang created the universe from a point source.
During this process, Light Elements, like H, He, Li, B, and Be formed. From this point in time, the universe began to expand and has been expanding ever since.
Concentrations of gas and dust within the universe eventually became galaxies consisting of millions of stars.
Within the larger stars, nuclear fusion processes eventually created heavier elements, like C, Si, Ca, Mg, K, and Fe.
Stars eventually collapse and explode during an event called a supernova. During a supernova, heavier elements, from Fe to U, are formed. (See figure 1.9 in your text).
Throughout galaxies clusters of gas attracted by gravity start to rotate and accrete to form stars and solar systems. For our Solar System this occurred about 4.6 billion years ago.
The ball at the center grows dense and hot, eventually nuclear fusion reactions start and a star is born (in our case, the sun).
Rings of gas and dust orbiting around the sun eventually condenses into small particles. These particles are attracted to one another and larger bodies called planetismals begin to form.
Planetesimals accumulate into a larger mass. An irregularly-shaped proto-Earth develops.
The interior heats and becomes soft. Gravity shapes the Earth into a sphere. The interior differentiates into a nickel-iron core, and a stony (silicate) mantle.
Soon, a small planetoid collides with Earth. Debris forms a ring around the Earth.The debris coalesces and forms the Moon.
The https://exam.pscnotes.com/atmosphere”>Atmosphere develops from volcanic gases. When the Earth becomes cool enough, moisture condenses and accumulates, and the Oceans are born.

Various National Missions and Programmes:-

  1. MNREGA
  2. Jan Dhan Yojna
  3. Atal Pension Yojna
  4. Skill India Mission
  5. Deen Dayal Upadhyaya Gram Jyoti Yojana
  6. Pradhan Mantri Suraksha Bima Yojana
  7. Pradhan Mantri Jeevan Jyoti Bima Yojana
  8. Sukanya Samridhi Yojana
  9. Pradhan Mantri  Garib Kalyan Yojana
  10. Jan Aushadhi Yojana (JAY)
  11. Nai Manzil Scheme for minority students
  12. The Pradhan Mantri Awas Yojana (PMAY) or Housing for all by 2022
  13. AMRUT Mission
  14. Smart City Mission
  15. National Food Security Act-2013

 

Sustainable and Inclusive Growth

The term Sustainable growth became prominent after the World Conservation Strategy Presented in 1980 by the International Union for the Conservation of Nature and Natural Resources. Brundland Report(1987) define sustainable development as the a process which seek to meet the needs and aspirations of the present generation without compromising the ability of the future generation to meet their own demands.

Natural resources are limited and thus sustainable development promotes their judicious use and put emphasis on conservation and protection of environment.Global warming and Climate change has brought the issue of Sustainable development in prominence.

Inclusive Growth is economic growth that creates opportunity for all segments of the population and distributes the dividends of increased prosperity, both in monetary and non-monetary terms, fairly across society.Indian Plans after the independence were based on the downward infiltration theory, which failed to bring equitable growth to all the sections of the Indian society.

Approach paper of 11th five year plan talked about “Inclusive and more faster growth” through bridging divides by including those in growth process who were excluded. Divide between above and Below Poverty Line, between those with productive jobs and those who are unemployed or grossly unemployed is at alarming stage.

Liberalization and Privatization after 1990’s have brought the nation out of the hindu growth rate syndrome but the share of growth has not been equitably distributed amongst different sections of Indian Society.

Various dimensions of Inclusive growth are:-

  1. economic
  2. social
  3. financial
  4. environmental

Important issues that are needed to be addressed to achieve the inclusive growth are:-

  1. Poverty
  2. Unemployment
  3. Rural Infrastructure
  4. Financial Inclusion
  5. Balanced regional development
  6. Gender equality
  7. Human Resource Development (Health, Education, Skill Development)
  8. Basic Human Resources like sanitation, drinking water, housing etc.

Government has launched several programs and policies for Inclusive growth such as:-

  1. MNREGA
  2. Jan Dhan Yojna
  3. Atal Pension Yojna
  4. Skill India Mission
  5. Deen Dayal Upadhyaya Gram Jyoti Yojana
  6. Pradhan Mantri Suraksha Bima Yojana
  7. Pradhan Mantri Jeevan Jyoti Bima Yojana
  8. Sukanya Samridhi Yojana
  9. Pradhan Mantri  Garib Kalyan Yojana
  10. Jan Aushadhi Yojana (JAY)
  11. Nai Manzil Scheme for minority students
  12. The Pradhan Mantri Awas Yojana (PMAY) or Housing for all by 2022

inclusive groth